Àá½Ã¸¸ ±â´Ù·Á ÁÖ¼¼¿ä. ·ÎµùÁßÀÔ´Ï´Ù.
KMID : 1102020170470010043
Applied Microscopy
2017 Volume.47 No. 1 p.43 ~ p.49
A Correlative Approach for Identifying Complex Phases by Electron Backscatter Diffraction and Transmission Electron Microscopy
Na Seon-Hyeong

Seol Jae-Bok
Jafari Majid
Park Chan-Gyung
Abstract
A new method was introduced to distinguish the ferrite, bainite and martensite in transformation induced plasticity (TRIP) steel by using electron backscatter diffraction (EBSD) and transmission electron microscopy (TEM). EBSD is a very powerful microstructure analysis technique at the length scales ranging from tens of nanometers to millimeters. However, iron BCC phases such as ferrite, bainite and martensite cannot be easily distinguished by EBSD due to their similar surface morphology and crystallographic structure. Among the various EBSD-based methodology, image quality (IQ) values, which present the perfection of a crystal lattice, was used to distinguish the iron BCC phases. IQ values are very useful tools to discern the iron BCC phases because of their different density of crystal defect and lattice distortion. However, there are still remaining problems that make the separation of bainite and martensite difficult. For instance, these phases have very similar IQ values in many cases, especially in deformed region; therefore, even though the IQ value was used, it has been difficult to distinguish the bainite and martensite. For more precise separation of bainite and martensite, IQ threshold values were determined by a correlative TEM analysis. By determining the threshold values, iron BCC phases were successfully separated.
KEYWORD
Transformation induced plasticity steel, Electron backscatter diffraction, Transmission electron microscopy
FullTexts / Linksout information
Listed journal information
ÇмúÁøÈïÀç´Ü(KCI)